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Abstract. We consider a quantum many-body system made of N interacting S = 1/2 spins on a lattice,
and develop a formalism which allows to extract, out of conventional magnetic observables, the quantum
probabilities for any selected spin pair to be in maximally entangled or factorized two-spin states. This
result is used in order to capture the meaning of entanglement properties in terms of magnetic behavior. In
particular, we consider the concurrence between two spins and show how its expression extracts information
on the presence of bipartite entanglement out of the probability distributions relative to specific sets of
two-spin quantum states. We apply the above findings to the antiferromagnetic Heisenberg model in a
uniform magnetic field, both on a chain and on a two-leg ladder. Using Quantum Monte Carlo simulations,
we obtain the above probability distributions and the associated entanglement, discussing their evolution
under application of the field.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 75.10.Jm Quantized
spin models – 05.30.-d Quantum statistical mechanics

1 Introduction

Entanglement properties have recently entered the tool
kit for studying magnetic systems, thanks to the insight
they provide on aspects which are not directly accessi-
ble through the analysis of standard magnetic observ-
ables [1–7]. The analysis of entanglement properties is par-
ticularly indicated whenever purely quantum effects come
into play, as in the case of quantum phase transitions.
However, in order to gain a deeper insight into quantum
criticality, as well as into other phenomena such as field-
induced factorization [7] and saturation, the connection
between magnetic observables and entanglement estima-
tors should be made clearer, a goal we aim at in this pa-
per. On the other hand, most entanglement estimators, as
defined for quantum magnetic systems, are expressed in
terms of magnetizations and spin correlation functions. It
comes therefore natural to wonder where, inside the stan-
dard magnetic observables, the information about entan-
glement is actually stored, and how entanglement estima-
tors can extract it. Quite clearly, by posing this question,
one does also address the problem of finding a possible
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experimental measure of entanglement, which is of cru-
cial relevance in developing possible solid-state devices for
quantum computation.

In this context a privileged role is played by the con-
currence C, which measures the entanglement of forma-
tion between two q-bits by an expression which is valid
not only for pure states but also for mixed ones [8,9].
In the framework of interacting spin systems, exploiting
different symmetries of such systems the concurrence has
been related to spin-spin correlators and to magnetiza-
tions [10–13]. However, C has not yet been given a gen-
eral interpretation from the magnetic point of view, and a
genuinely physical understanding of its expression is still
elusive.

Scope of this paper is therefore that of giving a simple
physical interpretation of bipartite entanglement of forma-
tion, building a direct connection between entanglement
estimators and occupation probabilities of two-spin states
in an interacting spin system. To this purpose we develop
a general formalism for analyzing the spin configuration of
the system, so as to directly relate it with the expression
of the concurrence. The resulting equations are then used
to read our data relative to the S = 1/2 antiferromagnetic
Heisenberg model in a uniform magnetic field, both on a
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chain and on a two-leg ladder. The model is a cornerstone
in the study of magnetic systems, extensively investigated
and quite understood in the zero-field case. When a uni-
form magnetic field is applied the behavior of the system
is enriched, gradually transforming its ground state and
thermodynamic behavior. The analysis of entanglement
properties in this model, and in particular that referring to
the range of pairwise entanglement as field increases, sheds
new light not only on the physical mechanism leading to
magnetic saturation in low-dimensional quantum systems,
but also on the nature of some T = 0 transitions observed
in bosonic and fermionic systems, such as that of hard-core
bosons with Coulomb interaction, and that described by
the bond-charge extended Hubbard model, respectively.
In the former case, the connection between magnetic and
bosonic model is obtained by an exact mapping that al-
lows a straightforward generalization of our results to the
discussion of the phase diagram of the strongly interact-
ing boson-Hubbard model [14]. In the more complex case
of the the bond-charge extended Hubbard model, a direct
connection between the Heisenberg antiferromagnet in a
field is not formally available, but a recent work by Anfossi
et al. [15] has shown that some of the T = 0 transitions
observed in the system are characterized by long-ranged
pairwise entanglement of the same type we observe in our
magnetic model at saturation.

Our data result from stochastic series expansion (SSE)
quantum Monte Carlo simulations based on the directed-
loop algorithm [16]. The calculations were carried on a
chain with size L = 64 and on a L×2 ladder with L = 40.
In order to capture the ground-state behavior we have
considered inverse temperatures β = 2L.

In Section 2 we define the magnetic observables we
refer to, and develop the formalism which allows us to
write them in terms of probabilities for two spins to be in
specific states, both at zero and at finite temperature. In
Section 3 we show how concurrence extracts, out of the
above probabilities, the specific information on bipartite
entanglement of formation. In Sections 4 and 5 we present
our SSE data for the antiferromagnetic Heisenberg model
on a chain and on a square ladder respectively, and read
them in light of the discussion of Sections 2 and 3. Con-
clusions are drawn in Section 6.

2 From magnetic observables to spin
configurations

We study a magnetic system made of N spins S = 1/2
sitting on a lattice. Each spin is described by a quantum
operator Sl, with [Sα

l , Sβ
m] = iδlmεαβγSγ

l , l and m being
the site-indexes.

The magnetic observables we consider are the local
magnetization along the quantization axis:

Mz
l ≡〈Sz

l 〉 , (1)

and the correlation functions between two spins sitting on
sites l and m:

gαα
lm ≡ 〈Sα

l Sα
m〉 . (2)

The averages 〈 · 〉 represent expectation values over the
ground state for T = 0, and thermodynamic averages for
T > 0.

We now show that the above single-spin and two-spin
quantities provide a direct information on the specific
quantum state of any two spins of the system. Let us con-
sider the T = 0 case first: for a lighter notation we drop
site-indexes, allowing their appearance whenever needed.
After selecting two spins, sitting on sites l and m, any
pure state of the system may be written as

|Ψ〉 =
∑

ν∈S
|ν〉

∑

Γ∈R
cνΓ |Γ 〉, (3)

where S is an orthonormal basis for the 4-dimensional
Hilbert space of the selected spin pair, while R is an or-
thonormal basis for the 2N−2-dimensional Hilbert space of
the rest of the system. Moreover, in order to simplify the
notation, we understand products of kets relative to (oper-
ators acting on) different spins as tensor products, mean-
while dropping the corresponding symbol ⊗. The quantum
probability for the spin pair to be in the state |ν〉, being
the system in the pure state |Ψ〉, is pν ≡ ∑

Γ |cνΓ |2, and
the normalization condition 〈Ψ |Ψ〉 = 1 implies

∑
ν pν = 1.

We consider three particular bases for the spin pair:

S1 ≡ {|uI〉, |uII〉, |uIII〉, |uIV〉}, (4)
S2 ≡ {|e1〉, |e2〉, |e3〉, |e4〉}, (5)
S3 ≡ {|uI〉, |uII〉, |e3〉, |e4〉}, (6)

with

|uI〉 ≡ | ↑〉l| ↑〉m, |uII〉 ≡ | ↓〉l| ↓〉m,

|uIII〉 ≡ | ↑〉l| ↓〉m, |uIV〉 ≡ | ↓〉l| ↑〉m,

|e1〉 = 1√
2

(|uI〉 + |uII〉) , |e2〉 = 1√
2

(|uI〉 − |uII〉) ,

|e3〉 = 1√
2

(|uIII〉 + |uIV〉) , |e4〉 = 1√
2

(|uIII〉 − |uIV〉) , (7)

where | ↑〉l,m(| ↓〉l,m) are eigenstates of Sz
l,m with eigen-

value +1/2(−1/2). For the coefficients entering equa-
tion (3), and for each state Γ , the following relations hold

c1Γ
= 1√

2
(cIΓ

+ cIIΓ
) , c2Γ

= 1√
2

(cIΓ
− cIIΓ

) , (8)

c3Γ = 1√
2

(cIIIΓ
+ cIVΓ

) , c4Γ = 1√
2

(cIIIΓ
− cIVΓ

) , (9)

meaning also

|c1Γ
|2 + |c2Γ

|2 = |cIΓ
|2 + |cIIΓ

|2, (10)

|c1Γ
|2 − |c2Γ

|2 = |cIΓ
cIIΓ

| cos(ϕΓ
I
− ϕΓ

II
), (11)

|c3Γ
|2 + |c4Γ

|2 = |cIIIΓ
|2 + |cIVΓ

|2, (12)

|c3Γ
|2 − |c4Γ

|2 = |cIIIΓ
cIVΓ

| cos(ϕΓ
III
− ϕΓ

IV
), (13)

where cνΓ ≡ |cνΓ |eiϕΓ
ν .

According to the usual nomenclature S1 and S2 are
the standard and Bell bases, respectively, while S3 is here
called the mixed basis. Such bases are characterized by the
fact that states corresponding to parallel and antiparallel
spins do not mix with each other. It therefore makes sense
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to refer to |uI〉, |uII〉, |e1〉, and |e2〉 as parallel states, and to
|uIII〉, |uIV〉, |e3〉, and |e4〉 as antiparallel states. The proba-
bilities specifically related with the elements of S1 will be
hereafter indicated by pI , pII , pIII, and pIV while p1, p2, p3,
and p4 will be used for those relative to the elements of
S2. From the normalization conditions

pI + pII + pIII + pIV = 1 (14)
p1 + p2 + p3 + p4 = 1 (15)
pI + pII + p3 + p4 = 1, (16)

or equivalently from equations (10) and (12), follows
pI + pII = p1 + p2, and pIII + pIV = p3 + p4, represent-
ing the probability for the two spins to be parallel and
antiparallel, respectively. We do also notice that the el-
ements of S1 are factorized states, while those of S2 are
maximally entangled ones.

The above description is easily translated in terms of
the two-site reduced density matrix

ρ =
∑

Γ

〈Γ |Ψ〉〈Ψ |Γ 〉 =
∑

νλ

|ν〉〈λ|
∑

Γ

cνΓ c∗µΓ
, (17)

whose diagonal elements are the probabilities for the ele-
ments of the basis chosen for writing ρ. The normalization
conditions equations (14–16) translate into Tr (ρ) = 1.

Thanks to the above parametrization, the magnetic
observables (1) and (2) are directly connected to the prob-
abilities of the two spins being in one of the states (7). In
fact it is

2(gxx + gyy) = 〈Ψ |S+
l S−

m + S−
l S+

m|Ψ〉
= 〈Ψ |S+

l S−
m + S−

l S+
m|

×
(
|e3〉

∑

Γ

c3Γ
|Γ 〉 + |e4〉

∑

Γ

c4Γ
|Γ 〉

)

= 〈Ψ |
(
|e3〉

∑

Γ

c3Γ
|Γ 〉 − |e4〉

∑

Γ

c4Γ
|Γ 〉

)

= (p3 − p4), (18)

and similarly

2(gxx − gyy) = (p1 − p2), (19)
gzz = 1

2 (pI + pII) − 1
4 = 1

2 (p1 + p2) − 1
4 , (20)

Mz ≡ 1
2 (Mz

l + Mz
m) = (pI − pII) , (21)

where all Si are suitable to calculate gzz, while (gxx±gyy)
and Mz specifically require S2 and S3, respectively. After
equations (18–21), one finds

pI = 1
4 + gzz + Mz, (22)

pII = 1
4 + gzz − Mz, (23)

p1 = 1
4 + gxx − gyy + gzz, (24)

p2 = 1
4 − gxx + gyy + gzz, (25)

p3 = 1
4 + gxx + gyy − gzz, (26)

p4 = 1
4 − gxx − gyy − gzz. (27)

It is to be noticed that the probabilities relative to the
Bell states do not depend on the magnetization.

In the the finite temperature case, the generalization is
straightforwardly obtained by writing each of the Hamilto-
nian eigenstates, numbered by the index n, in the form (3),
so that

ρ(T ) =
∑

νµ

|ν〉〈µ|
∑

n

e−En/T
∑

Γ

cνΓ,nc∗µΓ,n. (28)

In terms of probabilities the above expression simply
means that the purely quantum pµ shall be replaced by
the quantum statistical probabilities

pµ(T ) ≡
∑

n

e−En/T
∑

Γ

|cνΓ,n|2 . (29)

Therefore, apart from the further complication of the for-
malism, the discussion developed for pure states stays sub-
stantially unchanged when T > 0.

Equations (22–27) show that magnetic observables al-
low a certain insight into the spin configuration of the
system, as they give, when properly combined, the prob-
abilities for any selected spin pair to be in some spe-
cific quantum state. However, the mere knowledge of such
probabilities is not sufficient to appreciate the quantum
character of the global state, and more specifically to
quantify its entanglement properties.

3 From spin configurations to entanglement
properties

We here analyze the entanglement of formation [8,9,17]
between two spins, quantified by the concurrence C. In the
simplest case of two isolated spins in the pure state |φ〉 the
concurrence may be written as C = |∑i α2

i |, where αi are
the coefficients entering the decomposition of |φ〉 upon the
magic basis {|e1〉, i|e2〉, i|e3〉, |e4〉}. However, if one refers
to the notation of the previous section, it is easily shown
that

C(|φ〉) =
∣∣(c2

1
− c2

2
) − (c2

3
− c2

4
)
∣∣ = 2 |cIcII − cIIIcIV |, (30)

where equations (8, 9) have been used, with index Γ ob-
viously suppressed. The above expression shows that C
extracts the information about the entanglement between
the two spins by combining probabilities and phases rela-
tive to specific two-spin states.

In fact, one should notice that a finite probability for
two spins to be in a maximally entangled state does not
guarantee per se the existence of entanglement between
them, since this probability may be finite even if the two
spins are in a separable state [18]. In a system with de-
caying correlations, at infinite separation all probabilities
associated to Bell states attain the value of 1/4, but this
of course tells nothing about the entanglement between
them, which is clearly vanishing. It is therefore expected
that differences between such probabilities, rather than
the probabilities themselves give insight in the presence
or absence of entanglement.
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When the many-body case is tackled, the mixed-state
concurrence of the selected spin pair has an involved
definition in terms of the reduced two-spin density ma-
trix [9]. However, possible symmetries of the Hamiltonian
H greatly simplify the problem to the extent that C reads
as a simple function of the probabilities (22–27) only. We
here assume that H is real, has parity symmetry (meaning
that either H leaves the z component of the total mag-
netic moment unchanged, or changes it in steps of 2), and
is further characterized by translational and site-inversion
invariance. The two latter properties imply Mz

l as defined
in equation (1) to coincide with the uniform magnetiza-
tion Mz ≡ ∑

l〈Sz
l 〉/N , and the probabilities pIII = pIV ,

respectively.
Under these assumptions, the concurrence for a given

spin pair is [13]

C(r) ≡ 2 max{0, C′
(r), C

′′
(r)}, (31)

C′
(r) ≡ |gxx

(r) + gyy
(r)| −

√(
1
4 + gzz

(r)

)2

− M2
z , (32)

C′′
(r) ≡ |gxx

(r) − gyy
(r)| − 1

4 + gzz
(r), (33)

where r is the distance in lattice units between the two
selected spins. Despite being simple combinations of mag-
netic observables, the physical content of the above ex-
pressions is not straightforward. However, by using the
expression found in Section 2, one can write equations (32)
and (33) in terms of the probabilities for the two spins to
be in maximally entangled or factorized states, thus find-
ing, in some sense, an expression which is analogous to
equation (30) for the case of mixed states. In fact, from
equations (18, 19), it follows

2C′ = |p3 − p4| − 2
√

pIpII , (34)
2C′′ = |p1 − p2| − (1 − p1 − p2)

= |p1 − p2| − 2
√

pIIIpIV , (35)

where we have used pIII = pIV and hence p3 + p4 = 2pIII =
2√pIIIpIV . The expression for C′′ may be written in the
particularly simple form

2C′′ = 2max{p1, p2} − 1, (36)

telling us that, in order for C′′ to be positive, it must be
either p1 > 1/2 or p2 > 1/2. This means that one of the
two parallel Bell states needs to saturate at least half of
the probability, which implies that it is by far the state
where the spin pair is most likely to be found.

Despite the apparently similar structure of equa-
tions (34) and (35), understanding C′ is more involved,
due to the fact that √

pIpII cannot be further simplified
unless pI = pII . The marked difference between C′ and C′′
reflects the different mechanism through which parallel
and antiparallel entanglement is generated when time re-
versal symmetry is broken, meaning pI �= pII and hence
Mz �= 0. In fact, in the zero magnetization case, it is
pII = pI = (p1 + p2)/2 and hence

2C′ = 2max{p3, p4} − 1, (37)

which is fully analogous to equation (36), so that the above
analysis can be repeated by simply replacing p1 and p2

with p3 and p4.
For Mz �= 0, the structure of equation (37) is somehow

kept by introducing the quantity

∆2 ≡ (
√

pI −
√

pII)
2, (38)

so that

2C′ = 2max{p3, p4} − (1 − ∆2), (39)

meaning that the presence of a magnetic field favors bi-
partite entanglement associated to antiparallel Bell states,
|e3〉 and |e4〉. In fact, when time reversal symmetry is bro-
ken the concurrence can be finite even if p3, p4 < 1/2.

From equations (36) and (39) one can conclude that,
depending on C being finite due to C′ or C′′, the entan-
glement of formation originates from finite probabilities
for the two selected spins to be parallel or antiparallel,
respectively. In this sense we will speak about parallel and
antiparallel entanglement.

Moreover, from equations (34, 35) we notice that, in or-
der for parallel (antiparallel) entanglement to be present in
the system, the probabilities for the two parallel (antipar-
allel) Bell states must be not only finite but also different
from each other. Thus, the Bell states |e1〉 and |e2〉 (|e3〉
and |e4〉) result mutually exclusive in the formation of
entanglement between two spins in the system, the latter
being present only if one of the Bell state is more probable
than the others. The case p1 = p2 = 1/2 (p3 = p4 = 1/2)
corresponds in turn to an incoherent mixture of |e1〉 and
|e2〉 (|e3〉 and |e4〉).

In fact, the occurrence of the differences |p1 − p2| and
|p3 − p4| is intriguing. Let us comment on |p1 − p2|, as the
same kind of analysis holds for |p3 − p4|. In the general
case the difference p1 − p2 can vanish because of genuine
many-body effects which are not directly readable in terms
of 2-spin entangled or separable states. It is easier to inter-
pret equation (35) [Eq. (34)], if one restricts the possibil-
ities to the case in which the two spins are not entangled
with the rest of the system. By using equation (11), one
can select two particular situations all leading to p1 = p2:

(i) cIΓ
or cIIΓ

vanishes ∀Γ , meaning that |Ψ〉 does not
contain states where the two selected spins are parallel
and entangled;

(ii) for each Γ such that both |cIΓ
| and |cIIΓ

| are non-zero,
it is ϕΓ

I
− ϕΓ

II
= π/2. Thus, whatever the antiparallel

components are, the parallel terms of |Ψ〉 appear in
the form (α|e1〉 + α∗|e2〉).

The above analysis suggests the first term in C′′ (C′) to
distill, out of all possible parallel (antiparallel) spin con-
figurations, those which are specifically related with en-
tangled parallel (antiparallel) states. These characteristics
reinforce the meaning of what we have called parallel and
antiparallel entanglement.
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Fig. 1. Magnetization and correlators versus the magnetic field
h for the chain (Eq. (40)). The dashed lines mark the value of
the field where pII = 0 (see text). A colour version of the figure
is available in electronic form at http://www.eurphysj.org.

4 Chain

We consider the isotropic Heisenberg antiferromagnetic
chain in a uniform magnetic field, described by

H
J

=
∑

i

Si · Si+1 − hSz
i , (40)

where the exchange integral J is positive, and the reduced
magnetic field h ≡ gµBH/J is assumed uniform.

This model is characterized by the rotational symme-
try on the xy-plane, as well as by the existence of a satu-
ration field hs = 2, such that for h ≥ hs the ground state
is the factorized ferromagnetic one, with all spins aligned
along the field direction. Moreover, equation (40) has all
the necessary symmetries for equations (31–33) to hold.

Due to the rotational symmetry on the xy-plane, it is
gxx = gyy, meaning p1 = p2 = 1/4 + gzz ≤ 1/2, according
to equations (24) and (25), and hence null parallel entan-
glement (C′′ ≤ 0) between any two spins along the chain,
no matter the field, the temperature, and the distance be-
tween them.

In Figure 1 we show the T = 0 correlation functions for
nearest neighboring (n.n.) and next-nearest neighboring
(n.n.n.) spins, together with the uniform magnetization, as
the field is varied. Beyond the overall regular behavior, we
notice that there exists a value of the magnetic field where
one simultaneously observes gzz

(1) = 0 and Mz = 1/4 (in-
dicated by the dashed lines). According to equations (20)
and (21) this implies null probability pII for adjacent spins
to be parallel in the direction opposite to the field. This
means that the ground-state configuration is a superposi-
tion of spin configurations entirely made of stable clusters
of spins parallel to the field separated by Néel-like strings.

In Figure 2 we show the probabilities for n.n. spins to
be in the states of the mixed basis, together with the n.n.
concurrence: The value of the n.n. concurrence for h = 0 is
in agreement with the exact result in the thermodynamic
limit [12]. In presence of an external magnetic field, C(1)

is found positive ∀h, meaning that, no matter the value
of the field, the probabilities p3 and p4 for adjacent spins

0 0.5 1 1.5 2
h

0

0.25

0.5

0.75

1

p
4

p
I

C(1)

p
II

p
3

p II
 =

 0

Fig. 2. Concurrence and related probabilities of the mixed
basis states S3 (Eq. (6)) for n.n. sites of the chain (Eq. (40)).
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.
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p
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C(2)p
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p
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Fig. 3. Concurrence and related probabilities of the mixed
basis states S3 (Eq. (6)) for n.n.n. sites of the chain (Eq. (40)).
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

are always different from each other. The probabilities for
the triplet states |e3〉, |uII〉, and |uI〉 are equal for h = 0
and depart from each other when the field is switched on.
The singlet |e4〉 evidently dominates the ground state up
to a field which roughly corresponds to the value where
pII vanishes.

As for the concurrence, despite the ground-state struc-
ture evidently changes as the field increases, C(1) stays
substantially constant up to a large value of the field,
mainly due to the fact that not only p4 but also p3 de-
creases with the field. This behavior mimics the one oc-
curring in a spin dimer, whose ground state is the singlet
state |e4〉 up to h = 1 where, after a level crossing, |uI〉
becomes energetically favored. However, in a spin chain,
many-body effects smear the sharp behavior of the dimer
due to the level crossing. We do also notice that C(1) starts
to decrease as soon as the total probability for parallel
spins (pI + pII) gets larger than that for antiparallel spins
(p3 + p4). The further reduction of C(1) is mainly driven
by pI starting to rapidly increase.

In the same field region where a substantial change
in the n.n. configuration occurs, the n.n.n. concurrence
C(2) switches on. This is seen in Figure 3, where the
probabilities for n.n.n. spins are shown together with the
corresponding concurrence. In fact, when considering the
n.n.n. quantities, we notice that both gxx

(2) and gzz
(2) have a
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the nearest-up to the 5th-neighbors of the chain (Eq. (40)).
The inset shows the divergence of the range of the concur-
rence as h → hs, the line shows the (h − hs)

−1/2 behavior. A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

non-monotonic behavior, displaying a maximum and a
minimum, respectively, in the field region where C(2) gets
positive (as from the comparison between Figs. 1 and 3).

Regarding the probabilities, one finds that, although
the most likely state is always |uI〉, p3 is surprisingly large,
and almost equal to pI , as far as h < 1. Moreover, both p3

and p4 have a non monotonic behavior and increase with
h up to the field where we simultaneously observe gxx

(2) and
gyy
(2) attaining their extreme values, pI exceeding 1/2, p4

getting larger than pII , and C(2) switching on.
As observed in the n.n. case, when pII for n.n.n. spins

vanishes C(3) switches on. Let us further comment upon
C(1), C(2), and C(3). Given the fact that only antiparallel
entanglement may exist in this chain, it is not surprising
that C(1) > 0 and C(2) = 0 at low fields, as n.n. spins
belong to different sublattices, while n.n.n. spins belong
to the same sublattice. However, the fact that C(2) be-
comes finite indicates a ground-state evolution from the
Néel-like to the ferromagnetic state such that the system
enters a region where quantum fluctuations increase the
total probability for spins belonging to the same sublattice
to be antiparallel and entangled. The opposite effect is un-
derstood when C(3) is considered: in order to keep C(3) = 0
almost up to the saturation field, quantum fluctuations
must reduce the total probability for spins belonging to
different sublattices to be antiparallel and entangled.

The above comments upon C(2) and C(3) may be gen-
eralized to C(n) with even and odd n, respectively. In Fig-
ure 4 we in fact show Cn up to n = 5. The concurrence for
increasing distance between the two spins gets finite for
a big enough field resembling the phenomenology of finite
spin clusters [1]. Moreover, combining the exact results of
references [19,20], we find that the range of the concur-
rence for the model (40), namely the distance R such that
C(r) vanishes for r > R, is

R =
∣∣∣∣

ρ√
π(2 + 4Mz)(1

2 − Mz)1/2

∣∣∣∣
θ

, (41)

with the constant ρ = 0.924... When h → hs, it is
Mz  1/2−(

√
2/π)

√
hs − h and θ  2−(2

√
2/π)

√
hs − h,
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Fig. 5. Left panel: n.n. probabilities versus temperature at
h = 1.8. Right panel: n.n. and n.n.n. concurrences versus tem-
perature at h = 1.8. A colour version of the figure is available
in electronic form at http://www.eurphysj.org.

and the range of the concurrence is seen to diverge ac-
cording to R  (ρ

√
2/32)(hs − h)−1/2. In other terms,

approaching the saturation field, all C(n) become finite of
order O(1/N), consistently with the occurrence of a |WN 〉
state [21]. For such state the entanglement is maximally
bipartite in the sense of the Coffman-Kundu-Wootters in-
equality [21–23]. This scenario is consistent with our nu-
merical data. As shown in Figure 4 up to n = 5, for any
C(n) it exists a field hn > hn−1 such that C(n) is positive
for h ∈ [hn, 2), with hn → 2 for n → ∞. The divergence
of the range of the concurrence for h → hs is shown in
the inset of Figure 4. Although the correct power-law be-
havior shows up, the precision of the numerical data is
not sufficient to get the correct multiplicative constant. In
fact, the above expression (41) is derived from asymptotic
exact results, valid only for r � 1, when C(r) becomes too
small to resolve it numerically.

The formalism introduced in the previous sections
works also in the finite temperature case, where it de-
scribes the effects of thermal fluctuations on quantum
coherence. In Figure 5, the temperature dependence of
probabilities and concurrences, for h = 1.8, shows how
thermal fluctuations progressively drive the system to-
wards an incoherent mixture of states. Increasing T the
concurrences (right panel) are progressively suppressed
and above kBT ∼ 0.8J also the n.n. concurrence vanishes.
At higher temperatures none of the spin pairs in the sys-
tem is entangled and quantum coherence is lost. The tem-
perature behavior of the probabilities (left panel) is non
monotonic, signaling the relative weight of the different
states in the energy spectrum of the system. Eventually,
at high T all the probabilities tends to the asymptotic
value pν = 1/4.

5 Two-leg ladder

The above picture further enriches when considering the
two-leg isotropic ladder, described by

H
J

=
∑

i

∑

α=0,1

(Si,α · Si+1,α−hSz
i,α) + γSi,0 · Si,1, (42)
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Fig. 6. Magnetization and correlators versus the magnetic field
h for the ladder (Eq. (42)). A colour version of the figure is
available in electronic form at http://www.eurphysj.org.

where the index i runs on both the right (α = 0)
and left (α = 1) leg. The first term is the Heisenberg
Hamiltonian (40) for the right and left legs, while the last
term describes the exchange interaction between spins of
the same rung, whose relative weight is γ.

The model (42) is known to describe cuprate com-
pounds like SrCu2O3 and it has been extensively stud-
ied for zero [24,25] and finite field [26]. The system shows
a gap ∆ in the excitation spectrum that corresponds to
the energy cost for producing a triplet excitation on the
rungs [24]. The system reaches full polarization [26], with
all spins aligned along the field direction, for h > γ + 2.

In the following we will specifically consider the
isotropic case γ = 1, which is characterized by a gap
∆ ≈ 0.5J [24], and by a saturation field hs = 3. As
in the chain case, due to the rotational invariance on
the xy-plane, parallel entanglement cannot develop in the
isotropic ladder. On the other hand, antiparallel bipartite
entanglement can here develop between spins belonging to
the same leg, or to the same rung, or to a different rung
and leg. Two-spin quantities will be hereafter pinpointed
by the two-component vector (ri, rα) joining the two se-
lected spins, the first component referring to the direction
of the legs, and the second one to that of the rungs. The
indexes (01), (10), (11), (20) will therefore indicate n.n.
spins on the same rung, n.n. along one leg, n.n.n. on ad-
jacent rungs, and n.n.n. along the same leg, respectively.

Our SSE data in Figure 6 for the uniform magnetiza-
tion and the n.n. correlation functions gαα

(01), gαα
(10) confirm

the description given in the previous paragraph: before
the Zeeman interaction fills the energy gap at the critical
value hc  0.5, the ground-state configuration is frozen
and characterized by the singlet |e4〉 being by far the most
likely state for each rung.

The use of the formalism developed in Section 2 gives a
direct information on the physics of the system: in Figure 7
we see that the singlet probabilities p4 relative to n.n. spins
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Fig. 7. Probabilities relative to the mixed basis versus the
magnetic field h for the ladder (Eq. (42)): pI (♦), pII (�),
p3 (�), and p4 (∇). Open (full) symbols are for n.n. spins
along the same leg (on the same rung). The inset zooms in
on the behavior of pI , pII , and p3 near the critical field hc. A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

on a rung and along one leg, as functions of the field, share
a similar behavior everywhere but at the critical field hc,
where p4 for n.n. spins sitting on the same rung shows
up a kink that is not present in the singlet probability
along the leg. This qualitatively different behavior clearly
reflects the nature of the energy gap that closes at hc.
The sharp decrease of p4 in favor of pI on the rung just
above hc testifies that, even in the case, here considered,
of equal exchange interaction along the legs and on the
rungs (γ = 1), the first excitations in the energy spectrum
of the ladder are triplet excitations on the rungs.

When the Zeeman energy becomes larger than the gap,
for h > hc, the ground state starts to evolve with the field,
whose immediate effect is that of pushing the quantities
relative to spins on the rungs and along the legs towards
each other: in fact, for h > 1 n.n. spins along the legs and
on the rungs substantially share the same behavior. As for
the probabilities, we see that pII and p3 keep being equiv-
alent, no matter the value of the field, and slowly vanish
as saturation is reached. On the contrary the probability
for n.n. spins to be in |uI〉 increases at the expense of the
probability relative to the singlet state until, for h  1.8,
the two probabilities cross each other.

Finally, we apply the formalism of Section 3 to extract
features of the ground state from the concurrences. Fig-
ure 8 shows the concurrences C(ri,rα) up to the distance
r ≡ ri +rα = 4 for spins sitting on the same (upper panel)
and on different legs. The bipartite antiparallel entangle-
ment between two spins sitting at a given distance r is in
general larger on different legs, even beyond the n.n. case.

As expected, the field, after closing the gap, pushes
C(01) and C(10) towards each other. Quite unexpectedly,
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however, this evolution includes a region where n.n. con-
currence along the leg, C(10), increases. It is interesting to
notice that C(11) switches on at h  1.8, where p4 and pI

for n.n. spins are seen to cross each other in Figure 6,
signaling the crossover from an antiferromagnetic to a
ferromagnetic-like configuration of the n.n. spins.

6 Conclusions

In this paper we developed a simple and effective formal-
ism that allows to reconstruct the probability for two spins
of a multi-spin system to be in a given quantum state, once
the collective state of the system is given. Remarkably,
such probabilities are found to be simple combination of
standard magnetic observables, equations (22–27). Within
such formalism it is very natural to understand how con-
currence quantifies the amount of entanglement between
two spins by comparing the probabilities for those spins
to be in different Bell states. In particular the expression
for the concurrence clearly separates the case of parallel
[Eq. (36)] and antiparallel [Eq. (39)] spins, leading to the
introduction of the concept of parallel and antiparallel en-
tanglement.

The knowledge of the probability distribution for a
given set of two-spin states can be a useful tool to study
quantum phases dominated by the formation of particu-
lar local two-spin states and to investigate the transitions
given by the alternation of such states. Within this class
of phenomena we can cite the occurrence of short-range
valence-bond states in low-dimensional quantum antifer-
romagnets [27], and the transition from a dimer-singlet
phase to long-range order in systems of weakly coupled
dimers under application of a field or by tuning of the
inter-dimer coupling [28].
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